ADVANCES IN >>> HYDROTHERMAL CONVERSION OF INDUSTRIAL BIOGENIC RESIDUES INTO INTERMEDIATE BIOENERGY CARRIERS

RESULTS FROM THE F-CUBED PROJECT

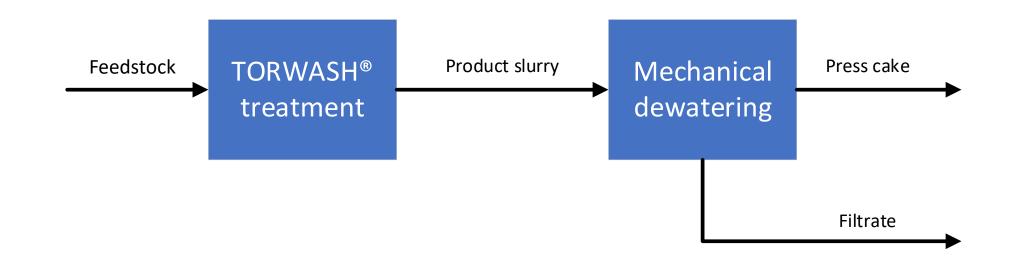
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

Pilot scale hydrothermal treatment of paper sludge, olive pomace and orange peels into intermediate energy carriers

Douwe Zijlstra TNO

About TNO

- Independent Research institute
- Almost 4000 employees
- Research aimed at maximum impact on big socially relevant topics
- Topics range from energy to health and defence to lifestyle


Biobased circular Technologies

Petten

- Part of Energy and Material Transition cluster
- Focus on developing technologies for biomass upgrading from lab-scale towards the market

Focus of this talk

Development from a lab-scale batch process to continuous pilot scale

Hydrothermal treatment

Hydrothermal carbonization vs Torrefaction

Main difference: Water

Hydrothermal carbonization

Wet streams can be applied Thermal decomposition (hydrolysis) Removal of minerals and salts Torrefaction

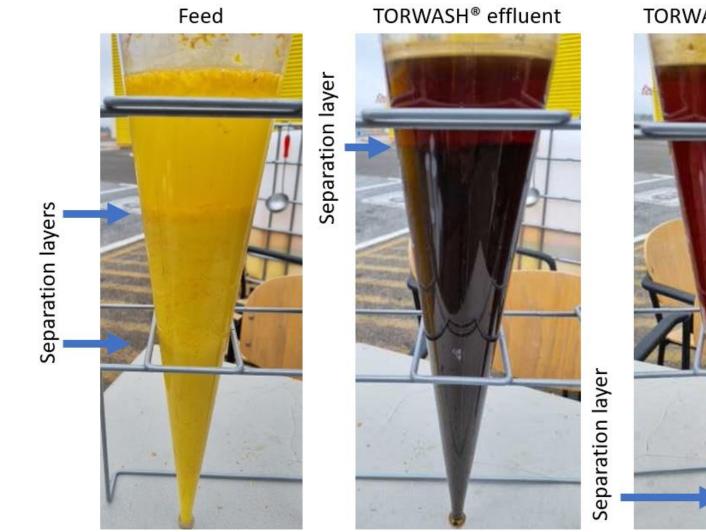
Lower operational pressure Mature technology


Upgrading of challenging feedstocks

Feedstocks with too much water and/or too much salt

How to make these streams valuable

- To produce valuable (fuel) products
- To co-recover valuable by-products


Paper sludge

Olive pomace

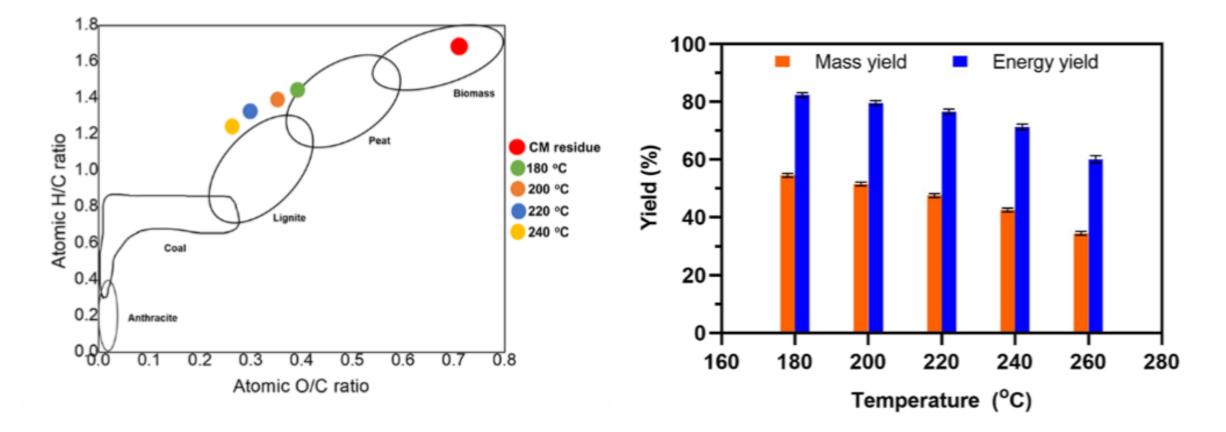
What happens?

TORWASH[®] Filtrate

9

What happens?

Feed (1.5 – 1.8% d.m.)


Filter cake (40% d.m. average)

Main challenge: Optimal temperature

Source: Tsarpali et al. Valorization of Brassica carinata biomass through conversion to hydrolysate and hydrochar. Biomass conversion and biorefinery **2022**

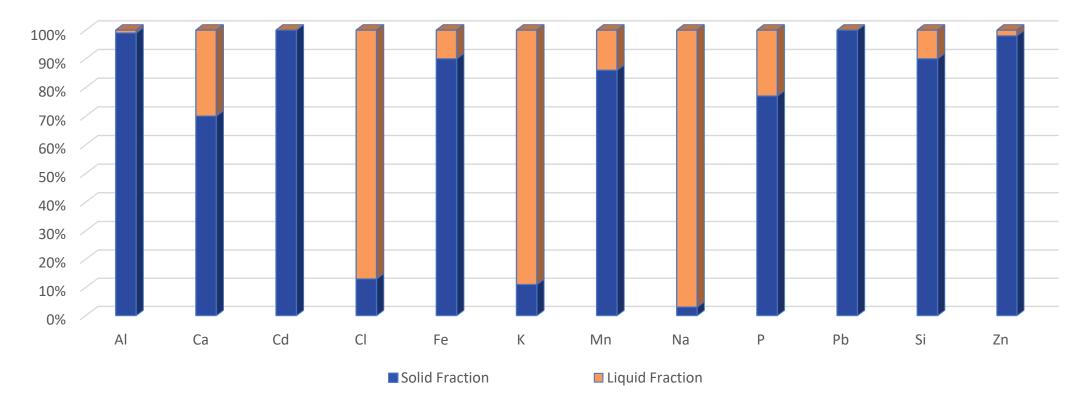
Main challenge: Optimal temperature

Dewaterability:

Biomass becomes more brittle, making the product easier to compress

Too low temperature \rightarrow not dewaterable

Digestability:


Organic fraction partially dissolves in the aqueous phase

Too low temperature \rightarrow low dissolved fraction Too high temperature \rightarrow phytotoxic components produced

Partitioning of key elements

- Sodium, potassium and chlorine partition mainly to the liquid fraction
- Most metals partition mainly to the solid fraction

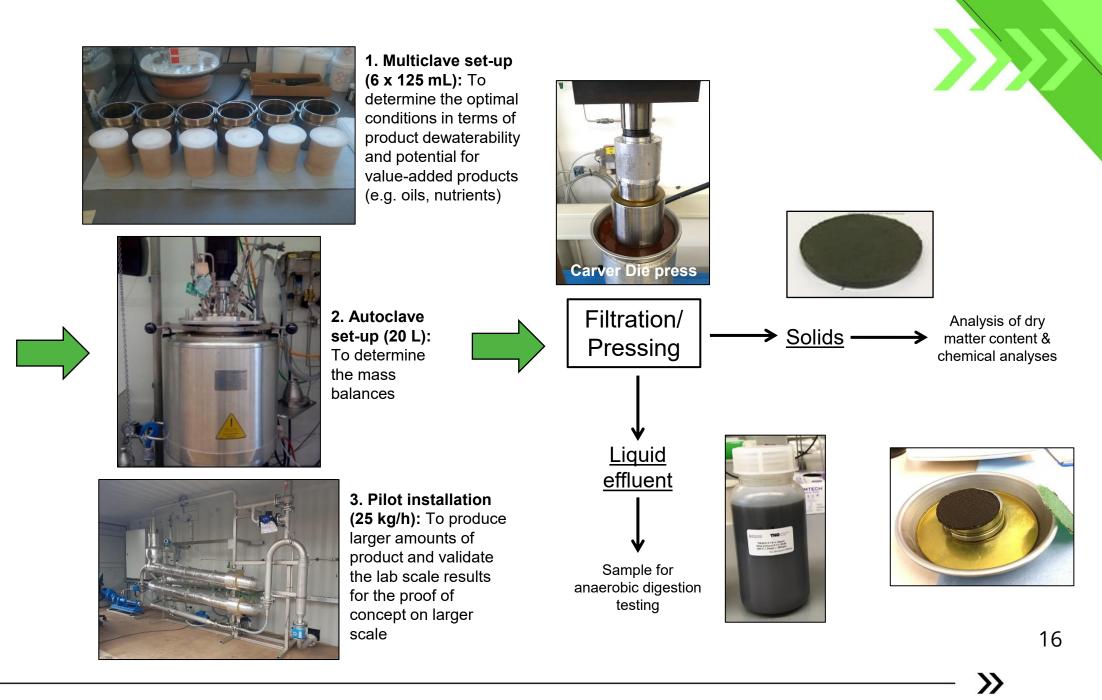
 $\boldsymbol{\Sigma}$

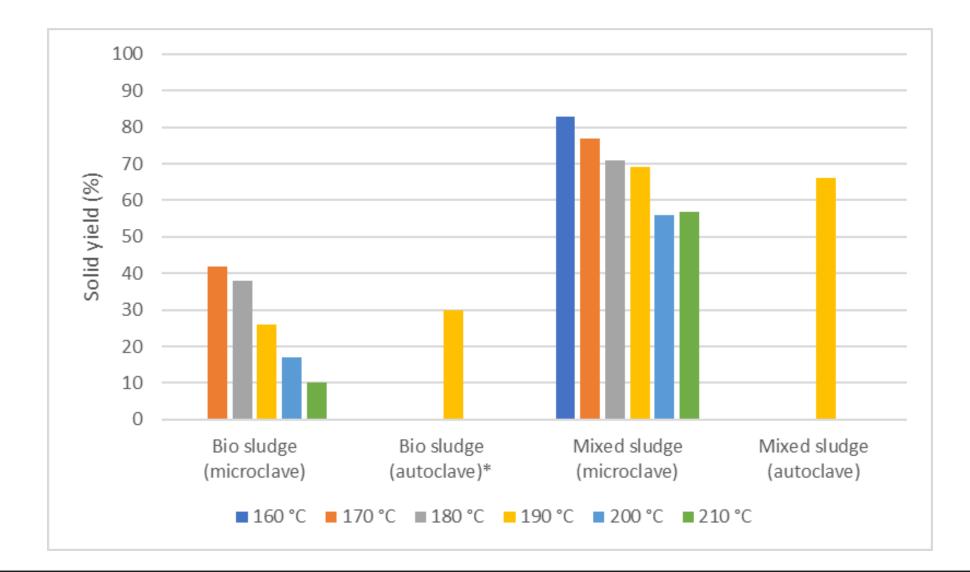
Lab-scale preparations

Enabling pilot testing

Goals

- Determine chemical and physical properties of the wet organic streams
- Determine optimal process conditions
- De-risk pilot plant campaigns


Orange peels


Paper sludge

Olive pomace

Results of lab testing

Initial pilot testing

Sludge Type	TORWASH® Temperature (°C)	Dewaterability (% d.s. in pressed cake)				
Autoclave Tests						
Bio-sludge	190	61				
Mixed sludge	190	61				
	•					
Pilot tests	Pilot tests					
Bio-sludge	185	not pressable				
Bio-sludge	195	48				
Bio-sludge	200	49				
Mixed sludge	185	34				
Mixed sludge	195	61				
Mixed sludge	205	63				

Pilot campaign

Enabling pilot testing

Goals

- Pilot tests on location where the residue streams are generated
- Move TORWASH technology from TRL 3 to TRL 5
- Proof of concept for feedstock flexibility and bio-energy carrier production
- WP goals for operational hours and press cake production

European tour

»

TORWASH on site

Pilot campaigns

Feedstock	Operational time	Dry press cake production	Main issue
Bio sludge	410 hours	54 kg	Very low dry matter content of feedstock
Olive Pomace	336 hours	192 kg	Presence of olive stone
Orange Peel	472 hours	117 kg	Low percentage of solids in the feed to hydrochar

Effect of F-CUBED process

Dry matter content (%)	\uparrow
Ash content (550 °C, % db)	\checkmark
C (% db)	\uparrow
N (% db)	-
H (% db)	-
O (% db)	$\mathbf{\Lambda}$
Higher heating value (MJ/kg db)	1

TNO N

Effect of F-CUBED process

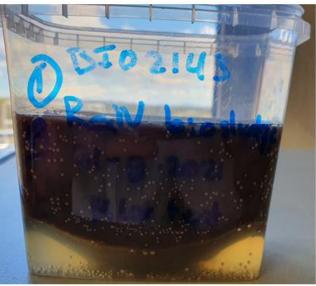
	Paper Sludge		Olive Pomace		Orange Peels	
	Feed	TORWASH press cake	Feed	TORWASH press cake	Feed	TORWASH press cake
Dry matter content (%)	1.6	42	22	58	22	42
Ash content (550 °C, % db)	19.7	24.9	9.5	1.7	5.8	3.2
C (% db)	41.3	46.0	53.3	63.8	47.0	56.3
N (% db)	6.3	4.5	1.3	1.5	2.1	2.2
H (% db)	5.8	5.8	6.8	8.3	6.1	6.3
O (% db)	32.7	22.2	33.4	24.3	42.5	32.1
Higher heating value (MJ/kg db)	18.1	20.8	23.0	29.2	18.4	22.1

All results as expected, except from the TORWASHed paper sludge ash content

TNO innovation

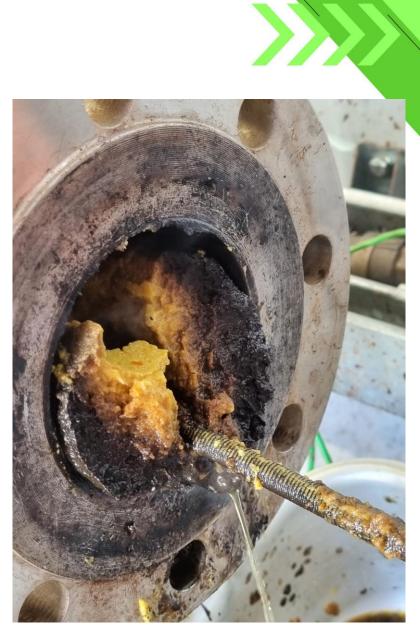
Effect of F-CUBED process

	Paper Sludge		Olive Pomace		Orange Peels	
	Feed	TORWASH press cake	Feed	TORWASH press cake	Feed	TORWASH press cake
Dry matter content (%)	1.6	42	22	58	22	42
Ash content (550 °C, % db)	19.7	24.9	9.5	1.7	5.8	3.2
C (% db)	41.3	46.0	53.3	63.8	47.0	56.3
N (% db)	6.3	4.5	1.3	1.5	2.1	2.2
H (% db)	5.8	5.8	6.8	8.3	6.1	6.3
O (% db)	32.7	22.2	33.4	24.3	42.5	32.1
Higher heating value (MJ/kg db)	18.1	20.8	23.0	29.2	18.4	22.1
TORWASH efficiency						
Total solid yield (%)		39		46		33
Volume reduction (%)	9	8.7	8	33.0	8	5.6
Moisture removal (%)	9	9.2	Ç	90.9	8	9.7



 Total solid yield is relatively low for all solids

 High volume reduction and moisture removal



THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

