ADVANCES IN >>> HYDROTHERMAL CONVERSION OF INDUSTRIAL BIOGENIC RESIDUES INTO INTERMEDIATE BIOENERGY CARRIERS

RESULTS FROM THE F-CUBED PROJECT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

NPK recovery potential from TORWASH[®] treated biomass

M. Bauer, G. Becker, E. Ovsyannikova, A. Kruse

6 October 2023

Principle

3

 Elemental composition of TORWASH[®] dewatered solids (filter press cake)

				Paper sludge		Waste olive pomace		Paper Waste olive Or sludge pomace p		Orange peels	
				10.09.21	21.09.21	11.11.21	12.11.21	29.04.22			
		С	%	46.2	46.8	66.1	65.3	56.1			
	ts	N	%	4.3	4.6	1.5	1.5	2.2			
	rien	Р	mg/g	21.2	23.4	0.2	0.2	0.2			
	unt	К	mg/g	0.9	0.5	1.1	1.4	1.2			
	acro	Ca	mg/g	21.3	22.2	4.3	4.5	11.2			
	Ê	Mg	mg/g	3.0	2.7	0.1	0.1	0.2			
		S	mg/g	8.8	9.4	1.2	1.0	1.4			
		Fe	mg/g	6.7	6.8	0.2	0.2	0.4			
	ents	Mn	mg/kg	11500	14400	2.78	1.95	3.63			
	utrie	Zn	mg/kg	1125	1199	26.1	19.7	12.9			
	ron	Cu	mg/kg	64.9	65.6	37.0	42.2	21.0			
	mic	Мо	mg/kg	7.97	10.7	0.55	0.53	0.25			
		Ni	mg/kg	10.5	9.3	1.45	1.14	3.95			
		Cd	mg/kg	11.2	10.2	<0.025	0.032	<0.100			
	als	Cr	mg/kg	32.3	32.8	3.97	1.67	2.31			
	met	Pb	mg/kg	39.3	38.7	0.282	0.272	3.03			
	٨٧	V	mg/kg	22.2	23.3	0.408	0.500	<0.100			
	hei	As	mg/kg	3.16	3.13	<0.025	<0.025	<0.100			
		Hg	mg/kg	0.135	0.143	<0.025	<0.025	<0.100			

 Elemental composition of TORWASH[®] liquid effluent

			paper sludge		waste olive pomace		paper waste olive or sludge pomace p		orange peels
			08.09.21	21.09.21	11.11.21	12.11.21	25.04.22		
	рН		6.3	6.1	4.4	4.4	4.1		
	TNb	mg/L	900	1060	142	127	291		
s	NH ₄ -N	mg/L	244	177	11.8	8.5	21.4		
rien	Р	mg/L	81.1	38.2	85.7	87.8	32.7		
but	К	mg/L	104	81.0	1590	1672	481		
acro	Ca	mg/L	60.1	74.0	73.3	49.8	144		
E	Mg	mg/L	48.8	24.5	76.9	64.0	48.9		
	s	mg/L	313	243	44.8	45.2	33.1		
	Fe	mg/L	12.1	4.2	0.6	0.7	0.6		
ents	Mn	µg/L	16400	21100	930	560	41		
utrie	Zn	µg/L	186	167	1210	790	<5.0		
ron	Cu	µg/L	2.5	1.7	5.54	3.12	67		
mic	Мо	µg/L	45.0	63.0	<0.50	<0.50	<5.0		
	Ni	µg/L	37.0	34.0	9.97	10.9	6.0		
	Cd	µg/L	<1.0	<1.0	<0.50	<0.50	<5.0		
als	Cr	µg/L	32.0	24.0	2.78	2.4	<5.0		
met	Pb	µg/L	1.3	<1.0	5.97	4.38	<5.0		
۲. ۲.	V	µg/L	13.0	12.0	<0.50	<0.50	<5.0		
hei	As	µg/L	24.0	25.0	2.3	3.1	<5.0		
	Hg	µg/L	0.076	0.092	<0.25	<0.25	<5.0		

 \gg

 Organic compounds in TORWASH[®]
liquid effluent

		paj slu	paper sludge		waste olive pomace		
		08.09.21	21.09.21	11.11.21	12.11.21	25.04.22	
COD	g/LO₂	9.8	7.9	27.9	27.8	43.4	
Sucrose	mg/L	1590	-	650	618	320	
Glyceraldehyde	mg/L	166	156	563	546	379	
Levulinic acid	mg/L	175	123	152	149	62.0	
Furfuryl alcohol	mg/L	252	323	249	300	164	
1,2,4-Benzenetriol	mg/L	-	56.0	170	215	50.0	
Hydroxymethylfurfural	mg/L	64.5	99.3	294	205	218	
Furfural	mg/L	42.7	187	307	346	140	
Glucose/Galacturans	mg/L	1090	1360	440	201	1240	
Fructose (Malic acid)	mg/L	201	214	1310	922	-	
Pyruvaldehyde	mg/L	93.8	46.0	582	474	109	
Formaldehyde/ (Dihydroxyacetone)	mg/L	-	97.4	447	428	617	
Formic acid	mg/L	356	84.6	1290	1540	772	
Acetic acid	mg/L	298	371	2210	2580	663	
MeOH	mg/L	-	-	1510	1540	898	
Acetaldehyde	mg/L	-	257	-	-	-	
Et/OH (Benzoic acid)	mg/L	510	272	1640	2600	5200	
Resorcinol	mg/L	112	79.1	na	na	196	
Catechol	mg/L	134	56.4	na	na	12.3	
Phenol	mg/L	3.40	-	na	na	15.8	
PAH*	µg/L	na	na	bql**	bql**	bgl**	

*PAH (sum of 16 polycyclic aromatic hydrocarbons) as organic pollutants; **content of all of the polycyclic aromatic hydrocarbons analyzed was less than quantification limit na=not analyzed

6

Σ

Post-digested
liquid effluent

			paper sludge		waste olive pomace		orange peels	
				x 2.25		x 8.4		x 12.5
	pН		8.1		7.5		7.5	
s	TNb	mg/L	412	927	103	862	49.4	618
cro- ient	NH₄-N	mg/L	317	713	75.3	632	31.2	390
ma	Р	mg/L	23.9	54	39.9	335	4.7	59
	К	mg/L	40.2	90.5	311	2610	50.9	636

7

NPK mass flows

8

Potential of nutrient recovery from paper sludge

»

(B) Potential of nutrient recovery from paper sludge

(B) Potential of nutrient recovery from paper sludge

(B) Potential of nutrient recovery from paper sludge

X

Phosphate solubility test

Phosphate solubility test

		Lab	Mini				
	-			-			
	from P-rich ex with citric and	xtract produced d sulphuric acid	from	P-rich extract pro	oduced with ox		
	acid	precipitate yield	precipitate purity	direct use precipitate as fertilizer	P recovery	NH4-N recovery	
<	Oxalic acid	+	0	0	+	0	
	Citric+H ₂ SO ₄	-	+	+	0	0	
	+, 0, - are perform negative respective	ance indicators by t ly	he subjective perce	ption of the author ra	nging from positive	e, neutral to	

»

Phosphate solubility test

- Total P recovery in miniplant: 38%
- Design of extraction unit needs to be optimized:
 - Mixing conditons
 - Improved wetting and resuspension of dry filter press cakes during acid leaching

X

(A) Recovery of P and part of N (as ammonium) in the form of a ready-to-use fertilizer

(B) Recycling effluents as liquid fertilizer

 \gg

Mg-source; NH₄-N source SI Analytics, TitroLine 7000

Precipitate from liquid fraction separated in the dewatering step

Olive pomace (1)

Orange peels (2)

Operating parameters		1	2
Adding Mg-source		yes	no
Adding NH ₄ -N-source		yes	no
Initial NH ₄ -N:Mg:P	mol/mol/mol	1.8 : 1.6 : 1	1.4 : 1.9 : 1
Reaction time	min	60	60
рН	-	9.0	9.0
Performances			
Precipitation yield	g/L	0.5	0.5
P recovery form the solution	%	50	60
NH ₄ -N recovery from the solution	%	13	15

>> 18

effluent	P content	Balanced content NH₄-N:P	lanced Balanced NaOH ontent content consumption		P recovery	Precipitate purity		
Olive pomace	-	-	0	-	0	0		
Orange peels	-	+	+	0	0	-		
+, 0, - are performance indicators by the subjective perception of the author ranging from positive, neutral to negative respectively								

- Feedstocks provide specific NPK contents, mobilities, availabilities
 - \rightarrow different approaches for recovery

Conclusion

- Paper sludge
 - Limited knowledge for direct integration of nutrient recovery to the WWT process
 - Production of a struvite based mineral fertilizer is expected to be feasible

- Torwash[®] process provided good separation of nutrients from orange peels and olive pomace to the effluent
 - \rightarrow Immediate struvite precipitation is an option

Outlook

- Paper sludge
 - Further development of the up-scaled process
 - Fertilizing tests (lab & field)
 - Assessment of feasibility, cost effectiveness and additional benefits (especially for direct nutrient recovery to the WWT process)

THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

