ADVANCES IN >>> HYDROTHERMAL CONVERSION OF INDUSTRIAL BIOGENIC RESIDUES INTO INTERMEDIATE BIOENERGY CARRIERS

RESULTS FROM THE F-CUBED PROJECT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

Connecting F-CUBED's bioenergy carriers: A novel supply chain model

Haresh Jayashankar a,b,c, Szymon Szufa a,b,c,d, Jan Wilco Dijkstrae, Heather Wraye, Rory Monaghan a,b,c

^a School of Engineering, University of Galway, University Road, Galway, Ireland, H91 TK33

^b Ryan Institute, University of Galway, University Road, Galway, Ireland, H91 TK33

^c MaREI, The SFI Research Centre for Energy, Climate and the Marine, Galway, Ireland

^d Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland

^e TNO, Energy Transition, Bio-based and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands

Objective of this work

To develop a **novel** supply chain model for intermediate bioenergy carriers produced from the F-CUBED process.

Simplified F-CUBED process

FTD System

>>

Parameters for the Case studies

For these case studies.....

Source of wet residue: Paper mills

Truck Transportation of F-CUBED products

End use: Partial replacement of coal in Ore reduction Steel mills

Configurations

Configuration 1 – Onsite F-CUBED system

Configuration 2 - Drying hub at B4

Configuration 3 – Centralized drying hub

Configuration 4 – Drying hub at B12

Case studies for Sweden

North East of Sweden

21 paper mills | 2 Steel mills

Scenarios for the North East of Sweden

With respect to Smurfit Kappa, Pitea

Scenario No.	Region	Wet residue source	End-use	Configurations
1		Paper sludge (Smurfit Kappa)		
2	North east of Sweden	Paper sludge (Smurfit Kappa + Billerud)	SSAB Steel mill	Hub at Smurfit Kappa
3		Paper sludge (Smurfit Kappa + Billerud)		Hub at SSAB Steel mill

Results for the North East of Sweden Region

With respect to Smurfit Kappa, Pitea

All of Sweden case study

Goal	 To identify optimal number of hubs and their locations 	ee Aura Ny Lanaana Lanaana
Challenge	 Handling non-linear cost functions (drying and palletization costs depend on the economies of scale) Traditional supply chain algorithms such as p-median requires the size and locations of the hubs to be pre-defined 	Copenhage Copenhage Copenhage Copenhage Copenhage Copenhage Copenhage Copenhage Copenhage
		21 paper mi
Methodology	 Developed a optimization model using Stimulated Annealing algorithm The objective functions were built to handle the transportation cost and the drying and palletization costs (non linear) which depends on the size of the hub 	

21 paper mills | 2 Steel mills

Quantity of pressed cakes processed at hubs

An analysis based on the number of processing hubs

Variation of total system cost (FTD, drying and palletization and transportation) based on the number of hubs

Conclusions for paper bio-sludge case

Primary Findings:

- Dry cakes are around 25% cheaper to produce than pellets
- Integration of hub infrastructure results in up to 35% overall cost reductions for the all of Sweden case

End-product choices, optimized hub infrastructure for some of the components of the system lead to reduction in costs.

Scenarios for olive pomace and orange peels

Scenarios for olive pomace

Scenarios for orange peels

No.	Wet residue source	Configurations	End use	Operation hours (h)	Transport method	Material transportation Form (wet residue site to End user)	No.	Wet residue source	Configurations	End use	Operation hours (h)	Transport method	Material transportation Form (wet residue site to End user)
1	арро (1884t DM/y)	Point to Point (Configuration 1)	ENDU01 – 100 km away from OP01	960	Truck	Dried Cakes	1	Delafruit(460t DM/y)	Point to Point (Configuration 1)	ENDU01 – 100 km away from ORP01	3200	Truck	Dried Cakes
2	appo(1884t DM/y)	Hub (Configuration 2) 10000t (DM)	ENDU01 – 100 km away from OP01	960	Truck	Dried Cakes	2	Delafruit (460t DM/y)	Hub processing 10000t (Configuration 2)	ENDU01 – 100 km away from ORP01	3200	Truck	Dried Cakes
3	арро (1884t DM/y)	Hub (Configuration 2) 10000t (DM)	ENDU01 – 100 km away from OP01	7500	Truck	Dried Cakes	3	Delafruit(460t DM/y)	Hub (Configuration 2) 10000t (DM)	ENDU01 – 100 km away from ORP01	7500	Truck	Dried Cakes

Cost results for the olive pomace and orange peels

Conclusions for olive pomace and orange peels case

- Olive pomace and orange peels can achieve significant cost savings for producing F-CUBED products (up to 87% and 69%, respectively) using large hubs with extended operational hours.
- Centralized hubs with extended hours offer clear cost advantages.
- Seasonality of olive pomace and the limited supply of orange peels present challenges, and therefore a potential solution is diversifying feedstock by processing multiple feedstocks throughout the year.

THANK YOU!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

